Dixie Valley Doe Research Workshop

Stuart D. Johnson

Caithness Operating Company,

LLC

June 12, 2002

Why are we here today?

- Clean Energy Source
- Renewable Energy Source
- Indigenous Energy Source
- Cost Effective Energy Source

Project Setting

- 62 MW gross generation design
- Dual Flash Turbine
 - HP Steam 90 psia
 - LP Steam 20 psia
- Production of 5200 kph mass flow
- Production Temperature near 465 °F
- Reinjection has averaged near 82% of Production

Current Production Well Distribution

- 2 Section 33 Producers 2000 kph
 - **28-33**
 - **37-33**
- 5 Section 7 Producers kph
 - **■** 63-7
 - **■** 73-7
 - 73B-7
 - **■** 74-7
 - 76A-7

3200

Current Injection Well Distribution

2 Section 5 Injectors

4500 gpm

- **25-5**
- **45-5**
- 6 Section 18 Injectors
 - SWL-1
 - SWL-3
 - **32-18**
 - **41-18**
 - 52-18
 - 65-18

3000 gpm

Augmentation Injectors

 2 Section 32 Injection Wells 2100 gpm

- **27-32**
- **38-32**

Figure 11a. Geologic cross-section C-C'a. The section incorporates a ramp-flat geometry for

Goals of Field Management

- Sustainability
 - Pressure Maintenance
 - Efficient Heat Mining
 - Minimize Wellbore Scaling
 - Minimize Formation Damage due to Scaling during injection

Pressure Maintainence

- Cooling tower vapor loss
 - 20% of produced fluids
- Injection less than production
 - Natural recharge is minimal
 - Result is pressure decline in reservoir
 - Pressure decline induces production decline
- Augmentation with External Fluids

DIXIE VALLEY PRODUCTION HISTORY

Well 84-7 Reservoir Pressure

FRACTION OF FLUID INJECTED

Heat Mining

- Cold Injection Fluids can recycle to production zones
- Maximized return times are critical to efficiently mine heat
- Tracer testing to define:
 - Flow paths
 - Residence Time for reheating
- Search for Hot Rock

Summary of Polyaromatic Sulfonate Tests at DV

Mineral Scaling Management

- Mixing Models to predict scaling of injected brines or external waters
- Characterization of Scaling process and products
- Removal of Scale Potential
 - Threshold Inhibitors
 - Mineral Recovery

CAITHNESS 230 KV LINE

SIERRA PACIFIC 230 KV GONDER LINE

Improved Mapping Tools

- Geologic Mapping
 - Remote Sensing
 - Infra-red
 - Thematic Mapping
 - Radar Imaging
 - Aeromag Acquisition and Processing
 - Gravity
 - Heat Flow Data Base
 - Seismic Analysis
 - Electrical surveys, MT, Geobilt

Dixie Valley as a Laboratory

- Simple one fault model
- Integrated suite of tools to develop conceptual models
- How will we step out to new targets:
 - Local
 - Regional Systems

Controlling Structures

- What is pathway to production zones?
- What is nature of production compartmentalization?
- Are geothermal systems small and compartmentalized? Or
- Are geothermal systems analogous to the regional alteration systems found in Mineralized trends and belts?